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Abstract. We investigate mesoscopic transport through a system that consists of a central quantum dot
(QD) and two single-wall carbon nanotube (SWCN) leads in the presence of a rotating magnetic field. The
spin-flip effect is induced by the rotating magnetic field, and the tunnelling current is sensitively related to
the spin-flip effect. We present the calculations of charge and spin current components to show the intimate
relations to the SWCN leads. Zeeman effect is important when the applied magnetic field is strong enough.
The current characteristics are quite different when the source-drain bias is zero (eV = 0) and nonzero
(eV �= 0). The asymmetric peak and valley of spin current versus gate voltage exhibit Fano resonance.
Multi-resonant peaks of spin current versus photon energy �ω reflect the structure of CN quantum wires,
as well as the resonant photon absorption and emission effect. The matching-mismatching of channels in
the CN leads and QD results in novel spin current structure by tuning the frequency.

PACS. 73.40.-c Electronic transport in interface structures – 73.63.Fg Nanotubes – 73.61.Wp Fullerenes
and related materials 73.22.-f Electronic structure of nanoscale materials: clusters, nanoparticles, nan-
otubes, and nanocrystals

1 Introduction

Charge and spin are two degrees of freedom for describ-
ing the nature of individual electrons. Usually the effect of
spin is very small in non-magnetic materials, and it can be
neglected in the absence of magnetic field. However, the
spin of an electron is responded to an applied magnetic
field sensitively. The investigation on the affection and ef-
fect of spin degree in materials is still in process, and it
is unmatured comparing with the study of charge degree
of freedom both for the fundamental and applied physics.
The motivation of employing the specific effects of spin
in materials naturally makes scientists to contrive novel
nano-devices for potential applications [1]. Datta and Das
have made the pioneering contribution to the exploration
of spin-dependent semiconducting nano-device. They have
proposed an electron wave analog of electro-optic light
modulator. In reference [2], the current modulation in the
proposed structure arises from the spin precession due
to spin-orbit coupling in narrow-gap semiconductor. The
theoretical work of efficient spin filter has been discussed
based on a quantum dot (QD) in the Coulomb blockade
regime weakly coupled to current leads [3]. The Rashba
term takes effect in a nonmagnetic resonant tunnelling
diode [4]. Such spin filter and spin memory systems could
be chosen as functional devices of quantum computer. Sev-
eral theoretical spin battery models, or spin generators,
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have been contrived for generating spins current, for in-
stance, the precessing ferromagnetic injection [5], the dou-
ble QD under a microwave radiation [6,7], and a spin field
effect transistor (SFET) applied with a rotating magnetic
field [8]. Therefore a very prosperous frontier of investiga-
tion known as spintronics is developing correspondingly.
The dissipatedness spin transport [9], quantized spin con-
ductance in insulating system provide some examples of
spintronics [10]. The experiments on the control and ma-
nipulation of spin make it possible for the fabrication of
spin electronic devices [11]. Recently, one of the authors
et al. have made some contributions to this field: (1) by
considering mesoscopic spin transport through a quantum
dot responded by a rotating and an oscillating magnetic
fields; (2) the spin tunnelling through a coupled toroidal
carbon nanotube system in the presence of a rotating mag-
netic field and an Aharonov-Bohm magnetic flux [12].

On the other hand, the single-wall carbon nanotubes
(SWCNs) are ideal materials and samples for investigation
because of their unique electronic features. Examples of
such prosperous investigations on this field are associated
with the metal-semiconductor transition [13], the long
spin coherent length [14], the Schottky barrier in metal-
semiconductor junction [15], the features of diode [16], and
field effect transistor [17]. SWCNs provide natural mate-
rials of quasi-one-dimensional quantum wire for investiga-
tion, and they contain rich physical band structure for ver-
ifying and revealing physical characteristics in laboratory.
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The combination of nano-technology based on spintron-
ics and CNs is thought to be extremely promising for fu-
ture electronic device innovations [18]. All these make the
carbon nanotubes (CNs) to be prospective materials for
nano-devices in future application. In this paper we study
the spin transport, as well as the charge transport through
a coupled system which consists of a central quantum dot
and two CN leads. The QD is controlled by a metallic gate
capacitively coupled to the QD. The source and drain are
biased by a voltage V in general to induce charge current.
We consider the situation that the QD is applied by a ro-
tating magnetic field, and the spin current is generated.
This rotating field induces spin-flip effect, which can be
employed as a spin generator [8]. Here we focus our at-
tention to the circumstance that the mesoscopic spin and
charge transport are controlled by source-drain bias with
the influences of CN leads. The density of states (DOS) of
CNs present specific effect to the resultant electronic prop-
erties due to the special electronic structures. The usual
wide-band limit method of calculation is invalid.

We arrange the remainder of the paper as follows. Sec-
tion 2 presents the formalism and derivation of tunnelling
current by employing the nonequilibrium Green’s function
technique. The charge and spin current formulas are given
there. Section 3 is devoted to the numerical calculations
and discussions of the obtained results. There we make
some comparisons with the system coupled with normal
leads. Brief conclusion and remarks are given in the final
section.

2 Model and formalism

We consider the system which is consisted of a QD coupled
to one left and one right CN leads. The QD is relatively
large, and the intra-dot electron interaction is neglected.
The size of QD is about 10 nm in three dimensions. We
assume that the right and left CN leads are located in ey

direction, and the ez direction is perpendicular to the CN
leads. A rotating magnetic field with angular frequency ω
is applied to the QD, and it is screened in order not to
affect the leads. The magnetic field rotates around the z-
axis with the tilt angle θ, i.e., B(t) = B0 [sin θ cos(ωt)ex +
sin θ sin(ωt)ey + cos θez ], where B0 is the constant field
strength. Spin-flip effect is induced by this rotating field,
and it is the major source of spin current. The Hamiltonian
of our system is composed of the three subsections and the
tunnelling term as

H =
∑

δγkσ

εδγ,kσc†δγ,kσcδγ,kσ +
∑

�σ

Ẽ�σ(θ)d†�σd�σ

+ξ
∑

�

[
exp(−iωt)d†�↑d�↓ + exp(iωt)d†�↓d�↑

]

+
∑

δγk�σ

[
Rγc†δγ,kσd�σ + H.c.

]
, (1)

with ξ = µBB0 sin θ, Ẽ�σ(θ) = E� + σµBB0 cos θ, and µB

being the Bohr magneton. In the Hamiltonian, the oper-

ators c†δγ,kσ(cδγ,kσ), and d†�σ(d�σ) are the creation (anni-
hilation) operators of electron in the two CN leads and
the central QD, respectively. The spin subscript σ takes
the value σ = ±1, which denotes the situation for spin-
up ↑, and spin-down ↓. We use the tight binding model
to describe the electronic properties of the SWCN leads
where the Coulomb interaction is neglected [18,19]. Al-
though this is simple compared with the first principle
approach [20] and Luttinger model [21,22], it makes us to
understand the main physical feature of mesoscopic trans-
port problems [23]. The second and third terms stand for
the Hamiltonian of QD subjected to the external rotating
magnetic field. E� = E0

� − eVg indicates that the elec-
tron levels of QD are controlled by the gate voltage Vg,
where E0

� is the energy level of QD in the absence of ex-
ternal field. Rγ is the interaction strength of electrons be-
tween the γth lead and the central QD. The electronic
structures of CN leads make important contributions to
the output characteristics. The CN leads act as quantum
wires, since the quasi-one-dimensional terminals possess
special energy structure. Two kinds of CNs with highly
symmetric structure are armchair (n, n) CN and zigzag
(n, 0) CN. In the absence of magnetic flux, the armchair
(n, n) CN is metallic. For the zigzag (n, 0) CN in the ab-
sence of magnetic flux, it is metallic as n = 3ν, while it
is semiconducting with narrow energy gap as n = 3ν ± 1,
where ν is an integer. The energy of a CN lead is quan-
tized in the transverse direction, while it is not restricted
in the longitudinal direction. The energies of armchair and
zigzag CN leads in the tight-binding approximation are
given by [24]

εδγ,kσ = δγ0

{
1 + 4 cos

(
aky

2

)

× cos
(qπ

n

)
+ 4 cos2

(
aky

2

)} 1
2

,

εδγ,kσ = δγ0

{
1 + 4 cos

(qπ

n

)

× cos

(√
3aky

2

)
+ 4 cos2

(qπ

n

)} 1
2

,

where q = 1, 2, . . . , 2n, δ = ±, and γ0 = 3.033 eV. Here
a = b × 31/2, and b = 1.44 Å is the C–C bond length
of CNs known to be slightly larger than that of graphite.
We have investigated the mesoscopic transport through
similar systems in the absence of rotating field, but some
novel features are revealed in the current characteristics
under microwave fields [25,26].

The tunnelling current depending on spin components
in the γth lead can be derived by employing the Heisen-
berg equation and continuity equation

Jγ
σ′σ(t) =

i

�

∑

δk�

[
Rγ〈c†δγ,kσ′ (t)d�σ(t)〉

−R∗
γ〈d†�σ′(t)cδγ,kσ(t)〉

]
. (2)
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This current formula describes the injection of electrons
with the spin index σ from the γth lead to QD. As the
electrons are injected into QD, the rotating magnetic field
and local electrons interact with the incident electrons,
and the tunnelling current is asymmetric due to spin-
flip effect in the scattering regime. The spin current and
charge current are composed of spin-up and spin-down
current components. The charge current is determined by
Ic = e

∑
σ JL

σσ = e(JL
↑↑ + JL

↓↓) and the sz component spin
current is determined by Is = �(JL

↓↓ − JL
↑↑)/2. Usually,

in the absence of magnetic field, the current components
are equal even if the system is spin non-degenerate, and
the spin current is zero. However, as the rotating mag-
netic field is applied, this system can be taken as a spin
generator, but the spin current is not conserved.

In order to derive the tunnelling current, we define
the Green’s function GX

�σ,�′σ′(t, t′) of the coupled QD sys-
tem as GX

�σ,�′σ′(t, t′) = 〈〈d�σ(t), d†�′σ′(t′)〉〉X , where X ∈
{r, a, <} [27–29]. Employing the decoupling procedure
proposed by Jauho et al. [27], the tunnelling current can
be determined by the Green’s functions of QD as

Jγ
σ′σ(t) =

2
h

Re
∑

�

∫
dε1dε2
2π�

Γγσ(ε2)e−
i
�
(ε1−ε2)t

×
[
Gr

�σ,�σ′(ε1, ε2)fγ(ε2) +
1
2
G<

�σ,�σ′(ε1, ε2)
]

. (3)

The Fermi distribution function of the γth lead is de-
fined as fγ(ε) = 1/{exp[(ε − µγ)/KBT ] + 1}. Γγσ(ε)
is the line-width function of the γth lead defined by
Γγσ(ε) = 2π | Rγ |2 ργσ(ε), where ργσ(ε) is the DOS of
corresponding CN lead ργσ(ε) =

∑
kδ δ(ε − εδγ,kσ). The

influence of CNs on the mesoscopic transport is con-
tained in the line-width functions through the DOS of CN
leads. This means that the central problem is to solve the
nonequilibrium Green’s functions.

The retarded Green’s function of the coupled QD can
be derived from the Dyson-like equation

Gr
�σ,�′σ′(t, t′)=ξ

∫
dt1e

−iσωt1G
(0)r
�σ,�σ(t, t1)Gr

�σ̄,�′σ′(t1, t′)

+
∑

�′′

∫ ∫
dt1dt2G

(0)r
�σ,�σ(t, t1)Σr

σ(t1, t2)

× Gr
�′′σ,�′σ′ (t2, t′) + G

(0)r
�σ,�′σ′(t, t′). (4)

In equation (4), we have defined the Green’s function of
isolated QD as

G
(0)r
�σ,�′σ′(t, t′) = − i

�
θ(t − t′) exp

[
− i

�
Ẽ�σ(θ)(t − t′)

]
δ��′δσσ′

in the presence of Zeeman field. The total self-energy of
coupled CN leads is determined by Σ

r(a)
σ (t1, t2) =

∑
δγk |

Rγ |2 g
r(a)
δγ,kσ(t1, t2), which is given by the Green’s func-

tion of isolated CN leads g
r(a)
δγ,kσ(t1, t2) = ∓ i

�
θ(±t1 ∓

t2)exp[− i
�
εδγ,kσ(t1 − t2)]. One can obtain equation (4) by

employing the equation of motion, the decoupling proce-
dure, and by expressing it in the integral form. Since the
system is perturbed by the rotating magnetic field, the
Green’s function (4) is dependent on the two times t, t′.
This indicates that the time reversal symmetry is broken.

Similarly, the Keldysh Green’s function can be derived
from the integral equation

G<
�σ,�′σ′(t, t′) = ξ

∫
dt1e

−iσωt1G
(0)r
�σ,�σ(t, t1)G<

�σ̄,�′σ′(t1, t′)

+
∑

�′′

∫ ∫
dt1dt2G

(0)r
�σ,�σ(t, t1)[Σr

σ(t1, t2)G<
�′′σ,�′σ′(t2, t′)

+ Σ<
σ (t1, t2)Ga

�′′σ,�′σ′(t2, t′)]. (5)

We have defined the Keldysh self-energy
Σ<

σ (t1, t2) =
∑

δγk | Rγ |2 g<
δγ,kσ(t1, t2) in equa-

tion (5), which is determined by the Keldysh
Green’s function of CN leads by g<

δγ,kσ(t1, t2) =
i
�
f(εδγ,kσ) exp[− i

�
εδγ,kσ(t1 − t2)]. Equations (4) and (5)

contain the spin-flip effect, which is associated with the
terms described by the Green’s function GX

�σ̄,�′σ′ (t1, t′).
This signifies that the Green’s function GX

σ,σ is determined
by the spin-flip Green’s function GX

σ,σ̄. We are interested
in the situation that the magnetic field is strong enough,
and the frequency of rotating magnetic field is located in
the microwave field regime. This means that the adiabatic
approximation is invalid.

We make the Fourier transformation over equation (4)
with respect to t and t′, and by simple algebraic calcula-
tion, we obtain the retarded Green’s function of the QD
as

Gr
�σ,�′σ′(ε, ε′) = 2π�Gr

�σ,�σ(ε)[δ(ε − ε′)δ��′δσσ′

+ξG̃r
�σ̄(wσ)δ(wσ − ε′)δ��′δσ̄σ′ ], (6)

where wσ = ε + σ̄�ω, G̃r
�σ(ε) = gr

�σ(ε)/[1 − gr
�σ(ε)Σr

σ(ε)]
and Gr

�σ,�σ(ε) = G̃r
�σ(ε)/[1 − ξ2G̃r

�σ(ε)G̃r
�σ̄(ε + σ̄�ω)]. The

Fourier transformed retarded Green’s function of the iso-
lated QD is defined by gr

�σ(ε) = 1/[ε − Ẽ�σ(θ) + iη].
The total self-energy of leads is given by the summa-
tion of self-energy of each CN lead as Σr

σ(ε) =
∑

δγk |
Rγ |2 gr

δγ,kσ(ε). This self-energy is determined by the
Fourier transformed retarded Green’s function of isolated
CN leads gr

δγ,kσ(ε) = 1/(ε − εδγ,kσ + iη), (η → 0).
Similarly, by making Fourier transformation over equa-

tion (5), direct derivation results in the Keldysh Green’s
function

G<
�σ,�′σ′(ε, ε′) = 2π�|Gr

�σ,�σ(ε)|2{[ξ2|G̃r
�σ̄(wσ)|2Σ<

σ̄ (wσ)

+ Σ<
σ (ε)]δ(ε − ε′)δ��′δσσ′ + ξ[

|G̃r
�σ̄(wσ)|2
G̃a

�σ(ε)
Σ<

σ̄ (wσ)

+ G̃a
�σ̄(wσ)Σ<

σ (ε)]δ(wσ − ε′)δ��′δσ̄σ′}. (7)

The Keldysh self-energy Σ<
σ (ε) = i

∑
γ Γγσ(ε)fγ(ε) is in-

volved in the Keldysh Green’s function. In our system, the
wide-band limit approximation is invalid, and the real part
of the self-energy Σr

σ(ε) has contributions to the transport.
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Substituting the Green’s functions given in equa-
tions (6) and (7) into current formula (3), we obtain the
final expression of spin dependent current explicitly by

JL
σσ =

1
h

∑

�

∫
dε{Tσ(ε, ε)[fL(ε) − fR(ε)]

+Tσ(ε, wσ)ξ2|G̃r
�σ̄(wσ)|2[fL(ε) − fR(wσ)]}, (8)

where Tσ(ε, ε̃) is a part of transmission coefficient for elec-
trons tunnelling through the system defined by

Tσ(ε, ε̃) =
ΓL(ε)ΓR(ε̃)|G̃r

�σ(ε)|2
|1 − ξ2G̃r

�σ(ε)G̃r
�σ̄(wσ)|2 .

The tunnelling current reduces to the Landauer-Büttiker
formula as the spin-flip effect is removed by setting
θ = nπ, or by letting B0 → 0. As the source-drain
bias is zero, i.e., µL − µR = eV = 0, the charge cur-
rent disappears, while the spin current is nonzero as
θ 	= nπ(n = 0,±1,±2, . . .). The spin current is induced by
the rotating magnetic field B(t) to form spin flip which
is intimately associated with the photon absorption pro-
cedure. The spin current also disappears when ω → 0
even if the spins are polarized as θ 	= nπ. On the con-
trary, as the source-drain bias µL − µR = eV 	= 0, the
spin current and the charge current are both nonzero as
θ 	= nπ(n = 0,±1,±2, . . .), ω 	= 0, and B0 	= 0. As θ = nπ,
the spin current disappears, and the charge current is the
unique tunnelling current. For this case, the Zeeman field
only splits the energy spectrum to form non-degenerate
system, and the Zeeman splitting is symmetric about mag-
netic field B0.

3 Numerical calculation

We perform the numerical calculation of tunnelling cur-
rent at zero temperature since it provides rich quantum
characteristics. The Fermi function becomes the step func-
tion fγ(ε) = 1 − θ(ε − µγ), and the tunnelling current
formula in equation (8) is reduced to

JL
σσ =

1
h

∑

�

{
∫ eV

0

Tσ(ε, ε)dε

+
∫ eV

σ�ω

Tσ(ε, wσ)ξ2|G̃r
�σ̄(wσ)|2dε}, (9)

where we have taken µR as the reference of energy mea-
surement by setting µR = 0. The spin and charge currents
are nonzero as eV 	= 0. For this situation, the spin and
charge currents coexist in the same nano-device, and the
spin-flip effect contributes to the two currents obviously.
Since the source-drain bias is nonzero, electrons are ex-
cited to tunnel in the multi-channels of CN leads. This
indicates that the structures of CN leads contribute sig-
nificant effects to tunnelling current. We can employ the
characteristics of the two currents by adjusting source-
drain bias. When the source-drain bias voltage is zero,

the tunnelling current formula in equation (9) is directly
reduced to

JL
σσ =

1
h

∑

�

∫ 0

σ�ω

Tσ(ε, wσ)ξ2|G̃r
�σ̄(wσ)|2dε. (10)

The charge current is zero, while the spin current is
nonzero, i.e., Ic = 0, and Is 	= 0, which is discussed in ref-
erence [8] on considering the system composed of a central
regime and two normal metal leads. For this special situ-
ation, there exists only spin current, and one can use such
devices to generate pure spin current. In the numerical cal-
culations, energy is scaled by γ = 10−3γ0 = 3.033 meV,
spin current is scaled by Is0 = γ/(4π), and charge cur-
rent is scaled by Ic0 = eγ/h. The derivatives of spin-
flip currents in our system are scaled by Gc0 = eµBγ/h,
Gs0 = µBγ/(4π), and Gω0 = γ/4. For the weakly coupled
system, the coupling strengths of CN leads with the cen-
tral QD are chosen as |RL| = |RR| = 6.0 meV. Usually,
the parameters |Rγ | and energy levels E0

� should be calcu-
lated by first principle approach self-consistently accord-
ing to the model and engineering. We consider the single
level QD by setting E0

1 = 0, which gives the main physi-
cal picture for the electrons tunnelling through the system.
The multi-level quantum dot only provides multi-resonant
structure around the levels of QD E0

� [25]. Further more,
the non-zero single level QD gives the energy shifting to
form a resonant peak around E0

1 , which does not affect the
physical properties. The energy of coupled QD is modified,
and the self-energy is involved in the energy level for the
compound system. The real part of self-energy of leads is
determined by the principal value integral, which is zero
in wide-band limit by considering the DOS of leads as an
energy-independent quantity [27]. However, for our sys-
tem this term is not zero, and the energy of the coupled
QD is modified by

ReΣr
σ(ε) =

∑

γ

| Rγ |2
∫ +∞

−∞

1
ε − ε1

ργσ(ε1)dε1.

In fact, the real part of the self-energy provides additional
discrete energy channels for electrons to tunnel. The self-
energy is not related to the external biases as eVg, eV , or
�ω. This is equivalent to the case that the single-level QD
becomes a multi-level QD. The splitting of energy level is
related to the DOS of the leads, as well as the coupling
strengths.

Figure 1 shows the spin current Is versus gate volt-
age Vg for different photon energy �ω at zero source-drain
bias. Two metallic armchair CNs (9,9) are chosen to form
a symmetric coupled system. The photon energy is chosen
to be located in the order of microwave field regime, where
�ω = 0.1 meV corresponds to 2.39 × 1010 Hz. As the fre-
quency is low, a single resonant peak emerges at eVg = 0.
As the photon energy increases from 0.2 meV to 0.5 meV,
the resonant peak is suppressed, and the single peak is
split into two major peaks (diagram (a)). As the photon
energy changes to 0.6 meV, the maximum of Is continues
to be suppressed, and the split peaks become two small
side hills. This means that the regime of tunnelling current
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Fig. 1. The spin current Is versus gate voltage Vg with zero
source-drain bias for the (9,9)-QD-(9,9) system. The parame-
ters are chosen as B0 = 0.5 T, θ = 75◦. The solid curves are
associated with �ω = 0.5 meV , while the dashed curves are as-
sociated with �ω = 0.2 meV in diagram (a) and �ω = 0.6 meV
in diagram (b).

increases with increasing of photon energy, but the mag-
nitude of spin current is suppressed as a compensation.
As the photon energy increases, many excited electrons
participate in transporting through different channels.

We present the spin current versus gate voltage in Fig-
ure 2 to show the variation of spin current with respect
to different magnetic fields and CN leads. From diagram
(a), one observes that as the magnitude of magnetic field
B0 is small, there exists only one resonant peak. As the
magnetic field becomes strong enough, the single resonant
peak is split to form double resonant peaks, and the peaks
are separated completely as B0 becomes stronger. This
also manifests the situation that the spin current is ad-
justed by the gate voltage Vg obviously. Similar result can
be obtained for different θ. In diagram (b), we display
spin current for the system coupled with different metallic
CN leads. The spin current of the system (9,9)-QD-(9,9)
possesses two symmetric peaks with respect to the gate
voltage. The two side peaks become two shoulders, and
the main resonant peak increases obviously by replacing
the CN leads to form (9,9)-QD-(9,0) and (9,0)-QD-(9,0)
systems. This indicates that the pure spin current is sen-
sitively dependent on the CN leads, and the structure of
CN leads makes important contribution to the pure spin
current in the absence of source-drain bias.

Figure 3 shows the derivatives of spin and charge cur-
rents dIs/dB0, dIc/dB0 versus the Zeeman energy in the
presence of source-drain bias. The derivative of tunnelling
current versus Zeeman field can tell us the information of
detailed variation of current with the Zeeman energy. The
different curves represent different CN-QD-CN systems.
One observes that the derivative is strongly dependent on
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Fig. 2. The spin current Is versus gate voltage Vg with zero
source-drain bias for different magnetic fields and CN leads.
Diagram (a) is associated with the (9,9)-QD-(9,9) system as
�ω = 0.1 meV and θ = 75◦. The dotted, dash-dotted, dashed
and solid curves correspond to B0 = 1.2 T, 3.0 T, 6.0 T and
11.0 T, respectively. Diagram (b) is related to the systems with
different CN leads for B0 = 0.5T, �ω = 0.5 meV and θ = 75◦.
The solid, dashed and dotted curves correspond to (9,9)-QD-
(9,9), (9,9)-QD-(9,0) and (9,0)-QD-(9,0), respectively.
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Fig. 3. The derivative of spin and charge currents dIs/dB0,
dIc/dB0 versus the Zeeman energy µBB0 with nonzero source-
drain bias. The parameters are chosen as �ω = 0.5 meV,
θ = 75◦, Vg = 0 and eV = 0.6 meV. The solid, dashed and
dotted curves correspond to the (9,9)-QD-(9,9), (9,9)-QD-(9,0)
and (9,0)-QD-(9,0) systems, respectively.

the structure of CN leads and the Zeeman energy. In di-
agram (a), the derivative dIs/dB0 increases rapidly from
negative value to a maximum value, and then decays as
the Zeeman energy increases for (9,9)-QD-(9,9) system.
The derivative property of the (9,9)-QD-(9,0) system is
similar to that of the (9,9)-QD-(9,9) system, but possesses
different magnitude and position of maximum value. The
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Fig. 4. The spin current Is and charge current Ic versus
the Zeeman energy at nonzero source-drain bias. The param-
eters are chosen as �ω = 0.5 meV, θ = 75◦, Vg = 0 and
eV = 0.6 meV. The solid, dashed and dotted curves correspond
to the (9,9)-QD-(9,9), (9,9)-QD-(9,0) and (9,0)-QD-(9,0) sys-
tems, respectively.

derivative feature of the (9,0)-QD-(9,0) system is quite
different from the two others (dotted curve). There are no
obvious peaks compared with the former systems, but it
possesses a wide plateau. The fact for a derivative curve
changing its sign from negative to positive signifies that
there exists a valley at dIs/dB0 = 0. As the Zeeman en-
ergy is much large, µBB0 
 γ0, the derivative reaches
zero. This indicates that the spin current reaches its sat-
urate value. In diagram (b), the derivative of charge cur-
rent dIc/dB0 versus the Zeeman energy possesses similar
behaviors in the three systems with a negative valley at
about µBB0 = 0.12γ. The depths of valleys are different
from each other among the three systems. The valley of
(9,0)-QD-(9,0) system is the deepest one. The negative
of derivative charge current tells that the charge current
decreases as the Zeeman energy increases. The valley of
the derivative signifies that there exists a saddle point at
about µBB0 = 0.12γ in the charge current.

The spin current Is and charge current Ic versus Zee-
man energy µBB0 in the presence of source-drain bias are
displayed in Figure 4. The parameters are chosen corre-
sponding to the ones in Figure 3. The spin current de-
clines as the Zeeman energy increases, and then it in-
creases to its saturate value. The solid curve (for (9,9)-
QD-(9,9)) shows obvious difference from the other two
curves as µBB0 < 0.12γ. The saturate values are also
different from different systems. The nonlinear current
changes from zero to its minimum value (negative), and
then to its positive saturate value. However, the behav-
ior of charge current is simple for possessing a maximum
value at µBB0 = 0. The charge current declines monoton-
ically as the Zeeman energy increases. The magnitudes
of charge currents are different for the systems with dif-
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Fig. 5. The derivative of spin current dIs/dB0 and the spin
current Is versus the Zeeman energy µBB0 with zero source-
drain bias. The parameters are chosen as �ω = 0.5 meV,
θ = 75◦ and Vg = 0. The solid, dashed and dotted curves corre-
spond to the (9,9)-QD-(9,9), (9,9)-QD-(9,0) and (9,0)-QD-(9,0)
systems, respectively.

ferent CN leads. One observes that the system (9,0)-QD-
(9,0) can provide larger charge and spin currents, while
the system (9,9)-QD-(9,9) contains rich tunnelling prop-
erties compared with the other two systems.

Figure 5 shows the spin current and the derivative
of spin current dIs/dB0 at zero source-drain bias versus
the Zeeman energy µBB0. The charge current disappears,
and the spin current is determined by equation (10) for
eV = 0. When the Zeeman energy increases, the deriva-
tive of current dIs/dB0 increases from zero to its max-
imum value. It declines to its valley (diagram (a)), and
then the derivative of spin current increases again to reach
its saturate value as µBB0 
 γ. The behaviors of char-
acteristics appear distinct difference among the different
systems. The peak-valley behavior in the derivative of spin
current indicates nonlinear and non-monotonic character-
istics of spin current versus the Zeeman energy, (depicted
in diagram (b)). We observe that the Is−µBB0 character-
istics are much different as eV = 0 and eV 	= 0 shown in
Figures 4 and 5. The maximum value of spin current is also
different. This indicates that the source-drain bias affects
the spin current due to the injection of excited electrons
through multi-channels in the CN leads.

The spin current Is and charge current Ic versus
source-drain bias eV are displayed in Figure 6. The spin
current resonates at eV = 0, and it exhibits quantum
steps on the two sides symmetrically. The spin current
changes sign as the absolute value of the source-drain bias
|eV | increases shown in diagram (a). The magnitude of
spin current is shifted in the three different systems, and
the positive values are located around the resonant point
eV = 0. In diagram (b), we see that the charge current
disappears at eV = 0, and it increases nonlinearly as eV
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Fig. 6. The spin and charge current-voltage characteristics Is − V and Ic − V . The parameters are chosen as B0 = 0.5 T,
�ω = 0.5 meV, θ = 75◦ and Vg = 0. The solid, dashed and dotted curves correspond to the (9,9)-QD-(9,9), (9,9)-QD-(9,0) and
(9,0)-QD-(9,0) systems, respectively.

increases. Obvious steps in the I-V characteristics of the
charge current are observed. The quantum steps are con-
tributed by the two facts: one is the photon absorption
and emission procedure caused by the rotating magnetic
field, and the other is induced by the quantum nature of
CN leads. The magnitude of charge current reaches dif-
ferent saturate values as eV 
 γ for the systems with
different CN leads. The spin-flip effect is also involved in
the charge current.

Figure 7 displays the spin current Is and charge current
Ic versus gate voltage Vg biased by the source-drain volt-
age as eV = 0.6 meV. The spin current appears different
resonant structure compared with the situation as eV = 0
shown in Figures 1 and 2. The asymmetric peak and val-
ley characteristics indicate the deviation of Breit-Wigner
resonance, but the tunnelling is related to the Fano res-
onant tunnelling. The positive peak and negative valley
are resulted from the competition of the two components
of current in equation (9) when eV 	= 0. The systems
with different CN leads possess different heights of peaks
and depths of valleys. We present the charge current ver-
sus gate voltage in diagram (b) to shown resonance of
charge current. The resonant peaks are asymmetric, and
they are also deviated from the usual Breit-Wigner res-
onances. This asymmetric effect comes from the spin-flip
effect and the excited tunnelling in multi-channels of CN
leads when eV 	= 0. The tunnelling electrons are scattered
by the rotating field, and the unbalanced spin reflections
cause the asymmetric spin-dependent mesoscopic trans-
port. The magnitudes and shapes of tunnelling charge cur-
rents are intimately related to the structures of CN leads.

The spin current is in fact generated from the applied
rotating magnetic field. It also strongly associated with
the concrete quantum system. We exhibit the spin current
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Fig. 7. The spin current Is and the charge current Ic versus
gate voltage Vg with nonzero source-drain bias. The parameters
are chosen as B0 = 0.5 T, �ω = 0.5 meV, θ = 75◦ and eV =
0.6 meV. The solid, dashed and dotted curves correspond to
the (9,9)-QD-(9,9), (9,9)-QD-(9,0) and (9,0)-QD-(9,0) systems,
respectively.

Is versus photon energy of the rotating magnetic field �ω
in Figure 8 for the two cases as eV = 0.6 meV in (a),
and eV = 0 in (b). Multi-resonant peaks of spin current
appear versus the photon energy �ω, and the heights of
resonant peaks decline as the magnitude of photon en-
ergy increases. These multi-resonant spin current struc-
tures are associated with the CN quantum wires. The
DOS of a CN lead makes important contribution to the
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Fig. 8. The spin current Is versus photon energy �ω. The
parameters are chosen as B0 = 0.5 T, θ = 75◦ and Vg = 0.
Diagrams (a) and (b) are spin currents at eV = 0.6 meV, and
eV = 0, respectively. The solid, dashed and dotted curves cor-
respond to the (9,9)-QD-(9,9), (9,9)-QD-(9,0) and (9,0)-QD-
(9,0) systems, respectively.

spin current. Different CN systems possess different res-
onant tunnelling structures, which can be seen from the
different curves. The applied source-drain bias voltage in-
duces the effect to shift spin current down to a negative
value. As the bias voltage V is removed, the spin cur-
rent exhibits similar resonant structure as the case where
V 	= 0, but the magnitude of the current moves to the
positive regime. This also signifies that the CN structures
are involved in the mesoscopic transport in the pure spin
current. The single peak effect has been discussed for the
system as the QD is coupled to normal leads in refer-
ences [8] and [12]. We present the derivative of spin current
dIs/d�ω when eV = 0.6 meV in Figure 9a, b and c for dif-
ferent CNs coupled systems, respectively. The derivative
of spin current displays explicit resonant structures for dif-
ferent CNs coupled systems. The photon absorption and
emission procedure cause novel channels in QD, and the
matching-mismatching of channels in the CN leads with
QD determines the tunnelling properties.

4 Summary and discussion

We have investigated mesoscopic transport through the
systems consisted of a central QD and two SWCN leads
in the presence of a rotating magnetic field. The calcula-
tions of charge and spin current components show the inti-
mate relation with SWCN leads. Specific DOS structures
of concrete SWCN leads dominate the detailed spin and
charge transport significantly. The Zeeman effect is impor-
tant when the magnitude of magnetic field B0 is strong
enough. The spin-flip effect is induced by the rotating
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Fig. 9. The derivative of spin current dIs/d�ω versus pho-
ton energy �ω. The parameters are chosen as B0 = 0.5 T,
θ = 75◦ and Vg = 0. Diagrams (a), (b) and (c) are derivatives
of spin current at eV = 0.6 meV. The solid, dashed and dotted
curves correspond to the (9,9)-QD-(9,9), (9,9)-QD-(9,0) and
(9,0)-QD-(9,0) systems, respectively.

magnetic field, and the tunnelling current is sensitively re-
lated to the spin-flip effect. The current characteristics are
much different for the system when eV = 0 and eV 	= 0.
The source-drain bias can modify the spin current consid-
erably due to injecting excited electrons through multi-
channels of CN leads. The asymmetric peak and valley
of spin current versus gate voltage characteristics exhibit
Fano resonance. This asymmetric effect comes from the
spin-flip effect and the unbalanced spin reflections. Multi-
resonant peaks of spin current versus the photon energy
�ω reflects the structure of CN quantum wires and reso-
nant photon absorption and emission effect. The photon
absorption and emission procedure cause novel channels
in QD, and the matching-mismatching of channels in the
CN leads and QD results in the multi-resonant spin cur-
rent structure by tuning the frequency of rotating field.
We can employ this kind of CN-FET-CN devices to sup-
ply multi-resonant charge and spin current by controlling
the external parameters V , B0, Vg, and ω.
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